Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract BackgroundTruffles are subterranean fungal fruiting bodies that are highly prized for their culinary value. Cultivation of truffles was pioneered in Europe and has been successfully adapted in temperate regions throughout the globe. Truffle orchards have been established in North America since the 1980s, and while some are productive, there are still many challenges that must be overcome to develop a viable North American truffle industry. These challenges include extended delays between establishment and production, comparatively low yields, high spatial heterogeneity in yield distribution, and orchard contamination with lower-value truffle fungi. AimHere we review known requirements for truffle production including necessary environmental conditions, reproductive biology, and effective agronomic practices. ContentWe consider the potential limitations of importing exotic host-fungal associations into North America where there is already a rich community of competing ectomycorrhizal fungi, host pests and pathogens. We also describe the status of the North American truffle industry with respect to market potential, including production costs, pricing, and biological and socioeconomic risk factors. A critical aspect of modern trufficulture involves monitoring with genetic tools that supply information on identity, abundance and distribution of fungal symbionts, abundance of competitive and contaminating fungi, and insight into the interactions between fungal mating types that are fundamental to the formation of truffle primordia. ImplicationsCultivation of the ectomycorrhizal truffle symbiosis requires application of pragmatic agronomic practices, adopting rigorous quality control standards, and an understanding of fungal biology, microbiology, and molecular biology. Consequently, significant interdisciplinary collaboration is crucial to further develop the North American truffle industry.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Abstract Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here, we examined endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high‐resolution, long‐read metabarcoding approach. We found that the endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West‐Central Africa, Sri Lanka, and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are predominantly vulnerable to drought, heat and land‐cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests, and woodlands. We stress that more attention should be focused on the conservation of fungi, especially root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi in tropical regions as well as unicellular early‐diverging groups and macrofungi in general. Given the low overlap between the endemicity of fungi and macroorganisms, but high conservation needs in both groups, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms.more » « less
An official website of the United States government
